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INTRODUCTION

Numerical grouping procedures have been em-
ployed in various scientific fields. Best known to
bacteriologists would be numerical taxonomy
(14, 28, 38, 75, 78), where a particularly wide
range of different approaches has been investi-
gated. Otherwise, these procedures have been
employed in psychology to demonstrate character
associations (71, 72), in ecology (39, 87), and in
anthropology (51). Recently, numerical grouping
procedures have been introduced, e.g., in linguis-
tics (58), in archaeology (36), and in medicine as
an aid to the classification and diagnosis of disease
(3, 6, 33). Such techniques have demonstrated as-
sociation between points in the second dimension
such as (i) in the dispersion pattern of chromo-
somes (17), or (ii) within technology, e.g., for in-
terconnecting towns with the shortest possible
mileage of telephone cable (62).
Numerical grouping proceeds in two steps.

First, metrics of similarity are extracted to express
the degree of association between the items con-
sidered. Subsequently, a sorting strategy is ap-
plied to the similarity metrics to achieve the
grouping as such. Techniques now available for
numerical grouping have increased in number and
become more sophisticated during the last decade.
To disclose the rationale for selecting specific
procedures for analysis of bacteriophage data
(Bergan, manuscripts in preparation), a brief
presentation of the many alternative procedures
currently available is provided. The emphasis in
this paper is on numerical grouping procedures

developed since the extensive survey of Sokal and
Sneath (81). However, for the sake of complete-
ness, the earlier methods are also discussed. Other
recent surveys of aspects of the related literature
are found in Ball (1), in Cole (11), and in Har-
mann (32).
Grouping of bacteriophages by numerical pro-

cedures according to their lytic spectra will be
presented in later reports (Bergan, manuscripts in
preparation).

METRICS OF SIMILARITY
Coefficients of Association

The various approaches for computing the
resemblance between "operational numerical
units" may conveniently be subdivided into four
categories: (i) coefficients of association, (ii) co-
efficients of distance, (iii) angular coefficients, and
(iv) coefficients of correlation. Collectively, they
are denoted coefficients, or indices, of resem-
blance, similarity, agreement, or congruity. [In
this paper, an item considered for grouping will
be referred to as an operational numerical unit
(ONU) analogous to the more connotatively
restricted term "operational taxonomic unit"
(OTU) of Sokaland Sneath (81).]
The most commonly encountered metrics in

taxonomy have been (i) the "Jaccard-Sneath
index" (40, 73, 81)

SJS= nJK
nJK + nJk + nlK
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and (ii) the "simple matching coefficient" (79):

SSM =
nJK + nik

n

where, in accordance with Sokal and Sneath (81),
n is the total number of characteristics used for
comparison, nJK denotes all positive characters in
common for both ONU's, nJk means the number
of characters where ONU "J" has positive and
ONU "K" negative reactions, and vice versa for
njK, and nlk signifies the number of negative
characters shared.

Other coefficients of association can be con-
structed by appropriate variations in the enumera-
tion of negative and positive matches, in their
weighting, or by including the sums of rows and
columns for each ONU pair 2 X 2 table. Several
alternatives have been described by Cole (12),
Sokal, and Sneath (81), Ball (1), and Hall (31).
The differences in STs and SSM have evolved

from differing philosophies on the significance of
negative matches. In taxonomy, events of conjoint
character absence (nonoccurrence) are often con-
sidered just as important as positive matches (81).
Evidence has accumulated to show that inclusion
of negative matches may produce sharper group
demarcation (4, 34). Sneath (73) stated his own
rationale for excluding negative similarities to be
that he considered the class of negative properties
almost indefinite; however, this has been chal-
lenged (5). Coefficients counting both minus and
plus are more resistant to change in value upon
further addition of characters. Certainly, employ-
ing a large number of attributes leads to stability
in similarity coefficient values. Sokal and Sneath
(81) suggested that 60 or more characters would
be necessary.
A comparison of various other similarity

metrics appears in reference 81, but several indices
have been introduced more recently. McQuitty
(55) used an "index of association" which was the
simple sum of characteristics shared by two
individuals. Williams et al. (88) mentioned a
"nonmetric coefficient":

SWLL f3njK + nJk

2nJK + njK + nJk

Since only nonmatches appeared in the numerator,
this was a divisive metric, i.e., measured dis-
similarity rather than affinity. The double count-
ing of positive matches in the denominator was
based on the rationale that it actually contained
two positive reactions such that the weighting of
reactions became the same regardless of equality
or difference for the reaction (character). The

denominator equals that in Sorensen's index (82)
[the "coincidence index" of Dice (15) ] and that of
an unnamed index presented by Sokal and Sneath
(81).
Johnson (42) used the formula:

S(xy)= nJK + nJK
nJK + nJk nJK + njK

which has twice the numerical value of the
Kulczynski coefficient (44, 81).

Hubaflek (38) has constructed a similarity index
intended for multivariate characters

rEp - Z Idlr E p- |d
SH =

where r is the scoring scale range, Fp is the
number of concordant characters for the ONU
pair considered, and E Idl is the absolute total
difference for all characters. This index applies
only when all variables possess identical score
ranges.

In addition to the similarity index, Lance and
Williams (45, 88) also computed an "information
statistic": I = n * H, where n is total number, H is
a "system entropy":

U

H= -E p.1ogp.
S=1

in which Ps is the probability of the s-th state over
which the system may vary. In principle, the I
could be computed for any pair of items, but it is
not defined for continuous numerical data. Fur-
thermore, for u bivariate characters it reduces
to I = 2(njk + njK) log 2 (88).

Distance Coefficients
The distance coefficients have been exhaustively

described by Sokal and Sneath (81). The most
commonly used distance statistic is the simple
mean distance (dij) between ONU's "I" and "J"
for all characters, K:

1 U

jij2= - E (x. -X.k)2
n ,=i

Coefficients of association have been transformed
by various measures to express dissimilarity in
expressions subsequently treated as distances:

(80)d = (1 - SSM)A

d = [2(1 - Si;)]i
d = -l1g2 SRT (65)

(27)
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d = log2 n + fnk (5)n

When the coefficient of the simple average
Euclidean distance is applied to bivariate charac-
ters, the result is the expression:

d= nJk + njK
n

which is equivalent to d2 = (1 - SSM)

Angular Coefficients
Angular coefficients are conceptually related to

distance coefficients. Both consider a geometrical
model with the classifiable items distributed in a
multidimensional character space. The angular
coefficients describe the angle between lines drawn
from each single object to the character space
origin. The angle may be measured by its cosine
and then transformed. Bhattacharyya (6) used the
angle 4 itself; cos 4 may be transformed to a dis-
tance:

d = (2 - 2cos0)2.
Boyce (Ph.D. thesis, Univ. of Oxford, 1965)

used the cosine value without transformation:
n

E X4i X'q

cosoij =/
f

(ealx 2) (fsxij 2)

where xi is the value of character K for item "I,"
x,: for item "J," and n is the total number of
characteristics.

Correlation Coefficients
Among the correlation coefficients, the com-

mon product moment correlation coefficient (r)
defined in any standard textbook of statistics (86)
appears to be the most suitable (56, 67, 79, 81).
The Kendall rank correlation coefficient has also
been employed (22, 23). It can be shown (Bergan,
manuscript in preparation) that the product
moment coefficient for a 2 X 2 table transforms
to the Yule 4)-coefficient, which is listed by Sokal
and Sneath (81) as a coefficient of association and
has been used elsewhere for numerical allocation
(8; Bergan, manuscript in preparation).

X2 For a 2 X 2 contingency table may also be
used as a similarity statistic (16, 23, 81). It has
been pointed out that, for n items, the x2 = n r
(81).

Weighting of Characters
The principle of weighting is of key significance

in numerical taxonomy, where the Adansonian

principle of assigning equal weight to all charac-
ters has been an axiom. This is opposed to the
Aristotelian idea that in classification certain
characters have greater a priori information con-
tent than others (54). Unequal significance of
characters in traditional taxonomy has been an
organic part of the subjective skill of hierarchy
construction. Unavoidably containing an arbi-
trary element, traditional procedures are some-
what opposed to the very principle of objectivity
in numerical techniques.
The weighting procedure, however, can be

made objective such that concordance of rare
traits contributes more to similarity than identity
in common variates. With the assumption that
attributes are stochastic elements, Goodall (23,
24) used a "probabilistic similarity index," where
the cumulated probability of an observed pair was
calculated either exactly or by the x2 approxima-
tion based on an ONU pair contingency table.
The similarity index, SGoodall, for a pair of in-
dividuals was the complement of the combined
cumulative probability of their attributes (pi):

SGoodall = 1 - Epi
,x=1

Gower (unpublished data) intuitively has
followed a similar approach of probabilistic
character weighting:

U

cwk=1SGower = u

EWKii
k=i

where s,,ij is a score and wij is a weight for each
character K. The w,1ij = 1 for valid comparisons;
otherwise w1ij = 0. The s,5ij = 0 when wij =
0. In the Gower coefficient, the numerator is
calculated differently for bivariate and multi-
variate characters. For dichotomies, Scij = nJK
and consequently, SGower = SJK . Metric variables
are standardized by the formula:

s 1 - lxi - xii
where x-subscripts are the attribute values for
each ONU pair and R. is the total range of values
for the character K.

Similar principles were followed by Baron and
Fraser (3) in disease classification. They con-
sidered infrequent symptoms and signs to carry
a higher information value. Avoiding any a
priori or biased weighting, this becomes an
acceptable approach. Any other presently con-
ceivable principle for character weighting will
inadvertently cause misleading results. In
taxonomy, weighting in advance is unsatisfactory,
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also because it would be self-contradictory or im-
possible for organisms which hitherto have been
either unknown or are unrelated to any known
taxon.

Related to the problem of character weighting
is the choice of a suitable coding procedure for
the observational data. Characters existing in
only two mutually exclusive states present no
problem in this regard, but care must be exercised
in transforming traits which exist in several
different states or which are a composite of multi-
ple subtraits. In such situations, an element of
character weighting may inadvertently be intro-
duced, unless special precautions are taken and
the problem is defined properly. In a recent pres-
entation by Lockhart (48, 50), the reader will find
an excellent discussion on the proper coding of
data for computer use.

Choice of Similarity Index Attributes
The choice of the proper similarity statistic in

the end is left largely to individual preference.
Because of their different properties, the indices
decisively influence the similarity pattern and the
ensuing clustering results. Accordingly, similarity
metrics by and large are nonmonotonically re-
lated; it is not predictable that for three given
ONU's, "H," "I," and "J," the similarity Shj be-
tween "H" and "I" is always larger than for "I"
and "J," Si , for any index.

Qualitative data are handled well by coeffi-
cients of association, whereas metric data are
eminently treated by coefficients of correlation or
distance, SGoodall and SGower. For metric data,
distance has much to commend it (27), particu-
larly when variables are expressed in a standard-
ized, nondimensional scale to avoid aberrant in-
fluence from size (78). This may, for instance, be
achieved by dividing each measurement by the
standard deviation for all observations of that at-
tribute, or by coding between the limits 0 and 1
(9). Standardization is superfluous (i) when all
variates are measured in the same units, and (ii)
for presence-absence data (81).

In taxonomy, the proper selection of attributes
is decisive. This is mentioned here for its implica-
tion in other types of problems, notably the bacte-
riophage study to be presented (Bergan, manu-
scripts in preparation). The characters should
represent an exhaustive spectrum within the
character sphere.
For part of the bacteriophage grouping to be

reported, Sjs and SSM were selected, since each
represents opposites in the philosophy of the
importance of negative and positive matches and
thus may be considered to represent a synthesis of
many of the index existing for bivariate charac-
ters.

CLASSIFICATION PROCEDURES
General Remarks

Numerical allocating procedures are divisible
in two broad categories: (i) clustering procedures,
and (ii) techniques based on vector calculus (e.g.,
factor analysis and principal components analy-
sis). Clustering may be agglomerative or divisive.
The former starts with a single ONU and brings
about progressive ONU fusion; the latter initially
considers the entire population as one unit and
progressively subdivides it according to single
features. Divisive procedures are frequently de-
scribed as monothetic, but in reality they are
usually oligothetic (87) and are, in my opinion,
more useful for constructing diagnostic keys than
for demonstrating hierarchical structure.
A basic requirement for objective procedures is

that they be defined in detail. The same similarity
matrix provided different scientists must obtain
identical classificat: n patterns. A few of the
procedures dealt with Below actually contain pro-
visions contrary to this tundamental prerequisite.

It is pertinent to note that, owing to the ten-
dency for numerical grouping procedures to
involve considerable generalization, conclusions
should be made with some reservation. According
to individual preference and the nature of the
grouping problem, a series of procedures is
available for objective allocation.

Agglomerative Techniques
The crudest means of creating structure in a

Q matrix (relationship of elements; R matrix
analysis for relationships of characters) is by
"differential shading" (46, 81). This involves the
repetitious rearrangement of rows and columns to
create unified areas of high similarity. This
method, however, is unwieldy for large matrices
where each square, in addition, becomes small
and optic differentiation consequently becomes in-
adequate.
Some workers prefer a "bar diagram" to show

ONU affinities (46). This appears as a histogram
with each ONU along the abscissa and the per
cent similarity along the ordinate. One starts
nearest the ordinate with the two elements which
have the highest affinity and draws a line horizon-
tally at the per cent similarity level involved. The
third element to be entered is that which has the
highest affinity to either of the first two ONU's;
again, a horizontal line indicates the similarity
level. The remaining ONU's are entered one by
one according to their highest affinity with the
foregoing ONU. By connecting the horizontal
lines with vertical ones, one obtains a simple
representation of intragroup similarity. The
procedure, though, hides the nuances of intra-
group affinity and seems most suitable for rela-
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tively homogeneous groups or a small number of
ONU's.
More sophisticated are the "clustering proce-

dures" which constitute a large class of variant
approaches to the grouping problem. These
usually require the aid of electronic data process-
ing (EDP) as has been outlined briefly by Quad-
ling (64). Rubin (68) presented theoretical aspects
of clustering and suggested a "hill climbing
algorithm" as an approach to the programming of
such procedures. The short survey by Quadling
(64) gives the necessary background information
needed by the biologist. In most instances, he
would prefer to seek the highly specialized serv-
ices of a trained EDP programmer rather than
attempting to solve this unusual task by himself.
However, the biologist needs a knowledge of
mathematical details and objectives of the cluster-
ing procedures to make a suitable choice of proce-
dures.

Various cluster procedures have been eminently
described by Sokal and Sneath (81). The "ele-
mentary cluster analysis" consists of arbitrarily
selecting successively diminishing similarity levels
above which subsequent OTU pair similarities are
scrutinized. This fails to render a satisfactory
structure except for small matrices.

Objective procedures are inherent in Sneath's
(73) "clustering by single linkage." Here an ONU
is admitted into the cluster containing the
(possibly one) other individual with which the
ONU has the highest linkage. Since no condition
exists for overall affinity within clusters, these
become progressively heterogeneous. Single link-
age, therefore, has also been labeled a "chaining
procedure." Clustering by single linkage is related
to the "ramifying linkage method" and the
"approximate delimitation method" (10).
McQuitty has approached the linkage analysis

problem in various ways and developed a "hier-
archical linkage analysis" (55) which seems essen-
tially similar to single linkage cluster analysis.
The Sorensen's "complete linkage" (82) admits

that ONU which has the highest similarity to every
member already in the cluster. This procedure is
also called the "nearest neighbour linkage"
method (45). Complete linkage and "highest
linkage" entail irrelevant grouping bias for over-
lapping clusters, and they are therefore surpassed
by the "clustering by average linkage" elaborated
by Sokal and Michener (79).
The "complete linkage" is not to be confused

with the procedure of Nigel da Silva and Holt
(61) where the "highest linkage" criterion for
group formation is used (20). This procedure joins
two clusters at the highest similarity level found
between any ONU of the first group with any
ONU of the second group.

Average linkage procedures are involved in an
entire class of clustering techniques. They base
union of any individual ONU ("pair group"
method) or several ONU's ("variable group"
method) to any other particular ONU or cluster
on the basis of the average similarity of the poten-
tial entrant with the previous members of the
cluster considered. Those particular ONU's or
clusters may fuse, which results in the lowest
possible drop in the recalculated average correla-
tion index. As clusters enlarge they become in-
creasingly heterogeneous, and progressively more
remote relatives are admitted: the value of the
average cluster similarity simultaneously becomes
reduced. In the variable group method, the per-
missible similarity drop for each cluster cycle is
defined in advance. The level 0.03 has been found
acceptable for SSM (79) and 0.20 for a correlation
coefficient (57), but this value would vary with the
kind of grouping problem, the matrix size, the
particular coefficient of congruity used, and the
degree of overall ONU set homogeneity. Ac-
cordingly, the variable group procedure involves a
subjective element. The pair group method takes
longer to calculate but gives more detail in
branching, and consequently it seems preferable
for most problems. Boyce (Ph.D. thesis, Univ. of
Oxford, 1965) regarded the pair group method as
easier to programme for computers than the
variable group method.

Recalculation of affinities after each clustering
cycle in the pair group average clustering proce-
dures could be achieved by the Spearman sums of
variables formula used initially (79). This has now
been abandoned, owing to the occasional occur-
rence of reversals in the level of correlation (81),
in that a similarity Si, for ONU's "I" and "J"
could be lower than the cluster similarity S(ii)k
after addition to the cluster "I + U" of another
ONU, "K" (Sii < S(ij)k)- In any case, Spearman's
method is suitable only for correlation coefficients;
application to distances or coefficients of associa-
tion is not proper. For these reasons, new affinities
are now calculated as arithmetic averages of all co-
efficients involved in the prospective union of any
two clusters (74, 80; F. J. Rohlf, Ph.D. thesis,
Univ. of Kansas, 1963). Recalculation of affini-
ties during each clustering cycle may proceed by
an "unweighted linkage" (UWPGA) or a
"weighted linkage" (WPGA) procedure. Both
methods have in common the circumstance that
clustering starts with the ONU's with the highest
calculated similarities. In the unweighted proce-
dure (UWPGA), each individual ONU has equal
weight. For two clusters of 3 ("A," "B.""C") and
2 ("D," "E") elements, the average similarity
equals the sum of similarities between the ONU's
of the two clusters divided by the number of in-
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dexes. For UWPGA, regardless of the internal
cluster structure, the average similarity for the
two clusters will be:

Sad + Sae + Sbd + Sbe + Scd + See
S(abC)d. = 6

where, e.g., Sad denotes the similarity between
"A" and "D".
For the unweighted clustering procedure, refer-

ence is always made to the original similarity
matrix. With the weighted clustering procedure
(WPGA), on the contrary, a new similarity matrix
is recalculated after each cycle. An example of the
calculations involved in the WPGA is demon-
strated in Table 1.
With WPGA, the ONU's clustered during the

first clustering cycle contribute less to the average
similarity figure than ONU's admitted more
recently.

Sokal and Sneath (81, p. 190-191) quoted their
reason for adopting the weighted approach to be
that "underlying assumed phylogenetic causes of
the phenetic relationships under study" made it
less objectionable. Rationale for favoring the
weighted method is also given by Gower (27):
"These [individuals] would be represented by
identical points and we would not want them to
bias by sheer weight of numbers the cluster they
would inevitably form." Thus, WPGA will some-
what counteract any over-representation of one
(or a few) type(s) of ONU('s). Weighting was
likewise preferred by Kendrick and Proctor (43).
However, in recent publications, UWPGA hier-
archies have repeatedly been more closely cor-

related with the similarity matrices (76; Bergan,
manuscripts in preparation; Boyce, Ph.D. thesis,
Univ. of Oxford, 1963).
Gower (27) suggested a "centroid average"

clustering approach. Various other schemes simi-
lar in principle to the Sokal-Michener method,
but certainly different in computational detail,
have been formulated. Ball (1) subdivided the
important procedures into: (i) probabilistic, (ii)
clustering, and (iii) clumping techniques. With
Hall he developed ISODATA procedure where
grouping was based on decision theory. This
estimated the probability of pattern occurrence.
Owing to the large computer storage and compu-
tation time involved, the approach was con-
sidered impractical for all but small matrices. The
distinction made (1) between clustering and
clumping techniques seems to render recognition
of mere details.
Boyce (Ph.D. thesis, Univ. of Oxford, 1963) has

described an alternative procedure, "centroid
cluster analysis" (CCA) cognate to the group
average procedure. CCA is applicable only to
distances; for affinity or angular coefficients, con-
sequently, transformation to distance (actually
dissimilarities) is necessary. Boyce used the
formula:

dij2 = 2(1 - aij)
where aij was the cosine or the angular correlation
coefficient between two ONU's. Accordingly,
distances between centroids were expressed by

t1-1 - t2-I -
d.2B ~ WI W22t, 2t2

TABLE 1. Calculation of the weighted-pairgroup-clustering procedure with simple averages (WPGA) using
an arbitrarily selected similarity matrix

ONU
Matrix ONU __

A B C D E Equations

First A x
B 95 x A' - A + B
C 35 5 x D' D + E
D 80 70 10 x
E 20 30 40 90 x

Seconda A' C D'
A' x A"= A' + D'
C 20 x
D' 50 25 x

Third A"' C
A" x
C 22.5 x

a The formulas used for two of the calculations are: Sa'd' = (Sad + S.e + Sbd + Sbe)/4 and Sa.c-
(Sa'c + SdiC)/2. Sad signifies the similarity index between element "A" and element "D".
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where B is the mean of the squared distances
between the t, members of the first group and the
t2 members of the second, WI is the mean of the
Il(t, - 1) squared distances within the first
and W2 within the second group. The unweighted
centroid cluster analysis was less accurate than the
UWPGA.
Lance and Williams (45) introduced the "group

average procedure" wherein the average was
based upon the sum of similarities for all pairs of
individuals from each of the groups considered.
Wishart (89) has shown that this is equivalent to
the minimization of S,2 + Sj2 + di j2 where s12 and
Sj2 are the variances of items "I" and "J" and dij2
is the squared distance between each of their
centroids. If an association coefficient is em-
ployed, dij2 is substituted by Sij .

Working with his probability similarity index,
Goodall (23) used a Lancaster x2 approximation
during clustering. However, the calculation in-
volved with large matrices quickly becomes in-
surmountable. Goodall (25), in addition, intro-
duced hypothesis testing in cluster analysis. This
started with the null hypothesis that the set of
individuals considered formed, or sampled, a
single population. Only if the null hypothesis had
to be rejected at the significance level chosen,
should one proceed to subdivide the set into
classes. Lance and Williams (45), after extensive
testing of various clustering techniques, formu-
lated a "generalized sorting strategy" by the
linear expression:

dhk = aidhi + ajdhj + fdij + y'dhi - dhJI
By changes in parameter values, this equation
described all major agglomerative sorting proce-
dures (furthest linkage, complete linkage, median
linkage, centroid linkage, and average linkage in
Lance and Williams' nomenclature). In "furthest
linkage," the distance between the most distant
pair of ONU's in each cluster was measured. Re-
versal of fusion level was a problem for "'centroid
linkage" (88). Average group linkage was ob-
tained when:

ai = li/lnk; oj = nj/lnk; 3 =Y = 0

By setting
ai + aj + i3 = 1; ai = aj ; <1; y = 0

and giving /3 steadily decreasing values below 1
(including negative values), sets of hierarchies
with increasingly intense clustering may be ob-
tained. P Mannetje (52, 53) found that for Rhizo-
bium the most meaningful results were obtained
whenai = aC = 0.625;fl = -0.25;,y = 0.

Centroid procedures with a random selection of
"starter" individuals have been employed by Ball

and Hall (2), McQueen (50), and Sebestyen (70).
The starting points fused into one single centroid,
and further ONU's were added by various proce-
dures based on distance.
Johnson (42) described two "hierarchical clus-

tering schemes" (HCS), the "minimum method"
and the "maximum method." These are essentially
similar to the single linkage and the complete
linkage clustering procedures. Since the similarity
matrix for each clustering cycle is recomputed
directly from the preceding matrix and not from
the original matrix, the HCS becomes a weighted
procedure. To maintain the sequence of monotone
transformations of similarity values, the HCS was
based on each individual S value, not on averages
as has previously been found superior (79, 81). It
was asserted that the HCS methods were con-
ceptually simpler and that the clear-cut meaning
of the "connected" or "compact" solutions (42)
would otherwise be lost, arguments which are
contradictory to other presentations (81).
The "central clustering procedure" (or "nodal

clustering") of Rogers and Tanimoto (65) differ
markedly from the preceding techniques. Their
cluster analysis was designed for taxonomists who
wanted an aid in classification but desired to re-
tain the elements of skill and art intrinsic to tradi-
tional taxonomy. The central clustering (65) has a
built-in feedback from machine to man at all
steps in the procedure and amply allows for the
operator's subjective judgement. Thus, although
mathematically refined, and regardless of its
achievements in certain instances, this procedure
is not objective to the extent desirable for numeri-
cal allocation. Computational details appear else-
where (65, 81). In principle, the central clustering
commences by calculating an Ri index which for
each ONU signifies the number of paired com-
parisons where at least one character is shared,
i.e.,

SRT = nK + nik > 0
n + nJkc + njK

and selecting the ONU with the highest Ri as
centroid. For this, the sums of all n - 1 distances
are calculated: Hio = Edij, where dij =
-10g2 SRT . The successive admittance of nodes is
regulated by a "measure of inhomogeneity,"
un(dij). The central clustering procedure is in-
adequate because it merely delineates primary
nodes and does not indicate how they are inter-
related. Colman (13) found the results obtained
by the above procedure confusing and inferior
even to single linkage. Related to the central
clustering is the "cluster similarity cluster anal-
ysis" (19) which coordinates concepts employed
by several other procedures. The distance index
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calculated by Rogers and Tanimoto (65) was
replaced by a "cluster similarity figure."
Bonner (7) described a "method III" which, as

explained on the hand of distances (89), appears
to be fairly close to Sokal and Michener's methods
(79, 81), except for its commencing with a chance
selection of an ONU. In the Hyvarinen (39)
approach, the ONU's were clustered according to
an "information loss" entropy after the "most
typical items" had been identified. Inherent in the
clusters formed was a grave diameter constraint
similar to that found in the complete linkage
procedure (89).

Jancey (41) evaluated an interesting approach
whereby k points in space were randomly selected.
The ONU's were then allocated to their nearest
random center (class point) which, from the
start, was not necessarily inhabited by an ONU.
The center of group gravity around each point
was then calculated as the mean of the coordinates
of the group members on each axis, and, sub-
sequently, the class point moved to the center of
gravity. This process was repeated until no further
shift occurred for the point of class gravity. Opti-
mal grouping was reached through the meticulous
process of trying different starters and accepting
the situation with the least within-group variance.
Akin to this procedure is another technique de-
scribed by Forgey (21).

Wishart has described a "mode analysis" aimed
at stabilizing procedures like the two preceding
ones. Although appearing suitable for special
problems, i.e., grouping star clusters (88), its
utility in taxonomy and related fields remains un-
settled.

Divisive Techniques
Divisive techniques are for instance (i) the

"monothetic clustering technique" (49) where a
"cumulative difference" (do') indicates branching,
and (ii) the procedure of Edwards and Cavalli-
Sforza (17). The last procedure employed squared
distances and achieved optimal division when the
intergroup sum of squares was the largest and
simultaneously the intragroup sum of squares was
the smallest possible. Cluster density was charac-
terized by its variance, i.e., the ratio of the intra-
cluster sum of squares to the number of ONU's in
it. To this end, all possible intergroup and intra-
group sums of squares were calculated for each
unit, a detail which seriously limited the usefulness
of the method. Computers with 5-sec access time
need (n - 1)22n-11 sec computing time to examine
the (2n-' - 1) possible splits. Thus, the task
quickly becomes insurmountable. One hundred
hours are needed for as few as 21 ONU's. For the
113-element Q-matrix of the bacteriophage study
to be published (Bergan, manuscripts in prepara-

tion), the computing time would be 1.7 X 1022
years! Gower (27) suggested an approximation of
the above method (17), but he could not overcome
its principal disadvantages. Although establishing
a hierarchy, divisive methods lead to less homo-
geneous clusters than the agglomerative proce-
dures. Because progressively larger numbers of
characters are simply excluded from comparison
after each clustering cycle, divisive procedures
violate Adansonian principles; still, such tech-
niques may be useful for constructing diagnostic
keys (26, 28). Of assistance in the establishment of
such keys is, intuitively, also the probability of
character occurrence within the cluster. Accord-
ingly, Beers and Lockhart (5) introduced a formal
statistic P = n±/n , where n, is the number of
positive responses among a total of n, ONU's
within the cluster. The "hypothetical median
organism" (47) or the "hypothetical mean orga-
nism" (HMO) procedure (84) would also be
useful tools in constructing diagnostic keys. In
HMO, after completion of the clustering, the
most frequent characters within clusters are listed
until their number equals the mean number of
positive characters in each particular phenon.
Also related is consideration of the number of
characters which efficiently separate single bac-
terial strains (30, 69). Further numerical proce-
dures for achieving diagnostic keys are discussed
extensively elsewhere (29, 59, 60).
Ward (85) described an approach, "hierarchical

grouping," whereby the grouping proceeded not
from highest affinities, as is customary, but with
the lowest similarities. Group fusions must mini-
mize the squared deviations about the group
mean, and an "objective-function" value,
Z[i, j, k - 1], indicated goodness for the "in-
verted" fusion.

Miscellaneous Techniques
Somewhat related to clustering methods, but

actually nonhierarchical, are procedures used in
"operational research" (28). Here, the chief con-
cern is the achievement of optimal multipoint set
configuration, for instance, the task of finding the
shortest composite distance between a set of
towns. Solutions to these problems may be visual-
ized by "minimum spanning trees" (28).

Another, widely different approach used to
create correlative group structure is "factor analy-
sis," employing vector calculus; this is mathe-
matically somewhat more involved. Detailed pres-
entations of the mathematical formulations for
procedures related to factor analysis (32, 66, 77),
"principal components analysis" (26, 37, 63;
Boyce, Ph.D. thesis, Univ. of Oxford, 1963), and
"discriminant analysis" (18) are outside the scope
of this presentation.
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Controls on the Results of Classification

Interconnected with numerical allocating proce-
dures is the question of the goodness with which
the resulting group structure reflects the original
data matrix. Unfortunately, no exact procedure
for such testing exists. Frequently, in taxonomy,
comparisons of empirical and numerical classifi-
cations have been surprisingly similar. Results of
the sorting procedures may, however, be tested by
various correlation procedures. Sokal and Rohlf
(80) introduced the cophenetic correlation tests
whereby derdrograms were compared with each
other and with the similarity matrix on which they
rest. Some conclusions from such techniques will
be discussed elsewhere (Bergan, manuscripts in
preparation). Hypothesis testing is another possi-
ble approach, but the validity of t tests used
previously (38, 83) for these types of problems is
doubtful since the elements are probably not
normally distributed. It is also questionable that
the elements are stochastic.
The success of clustering may, furthermore, be

analyzed by entropy calculations (vide supra).
Gyllenberg (29) employed geometric theory rep-
resenting heterogeneity by the radius r =

2( Zda/n,)t12, where dequals the distance between
each ONU and the centroid within the cluster, in
which n, is the number of ONU's.

CONCLUDING REMARKS

The most recent wider scope evaluation of
cluster procedures has been presented by Sneath
(76). With the considerable attention presently
rendered to numerical grouping procedures, a

significant volume of work is annually added to
the literature. Contributions to this field appear in
a highly varied assortment of publications from
unrelated fields of biology and technology. Un-
avoidably, therefore, recent but relevant develop-
ments which deserve mention may have been ex-

cluded from this survey. Nevertheless, this review
should render a brief presentation of the variety
of considerations involved and inherently indicate
the motivation for the choice of the UWPGA and
the WPGA for the numerical grouping of typing
bacteriophages of Pseudomonas aeruginosa ac-

cording to their lytic spectra (Bergan, manuscripts
in preparation).
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